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The plane problem of maximization of the channel external circuit current by 
the choice of the tensor of the working medium resistivity P is considered on the 

assumption that tensor P is symmetric and defined by the principal values of 

p1 (2, Y) and PZ (2, Y) corresponding to the principal axes o and 6 to the angle 

Y (5, Y) betweenthe principal and the z-axes. Functions,.pi (2, y) (i = 1, 2) are 

subject to the inequalities 9 < pmin s--pi (2, y) < CU. Among the necessary con- 
ditions for maximum those of Weierstrass and Jacobi, generated by strong local 
and weak overall variations, respectively, of the control functions (of tensor ‘P) , 
are of particular importance. The Weierstrass condition was analyzed in relation 

to this problem in [l], where it was shown that pi (z, y) = 00, p2 (5, y) = pmlns 

can be assumed in optimum operation conditions. Angle y (z, y) , generally speak- 
ing, is not uniquely defined by the stationarity conditions. The choice of solution 
is governed by the Jacobi necessary condition which is the subject of the present 
analysis. 

The paper contains three Sections and an Appendix. In Sect.1 the equations 
derived in [l] for optimum operation conditions are transformed into a form con- 
venient for analyzing Jacobi’s condition. It is shown that under optimum operation 
conditions the case of arbitrary load R.reduces to that of short-circuiting by reduc- 

ing the external field induction B (5) by a certain constant. 
Section 2 contains the derivation of the Jacobi necessary condition. 
The case of short-circuiting is considered in Sect. 3. The process of the extre- 

ma1 solution change owing to the violation of Jacobi’s condition is illustrated on 

the example of a channel bounded by horizontal electrodes and vertical insula- 
tors. Data defining the gain in the value of the functional, which (gain) is conse- 

quent to passing from an extremal solution not satisfying Jacobi’s condition to that 
which satisfies it, are computed for this example. 

The possibility of deriving a satisfactory approximation for the optimum value 
of current by means of horizontal insulating baffles fitted in a channel with a 
medium of constant scalar resistivity pmin is discussed in the conclusion. 

Unless otherwise indicated, the notation of [l] is used throughout the following 
text. 

1. Strtrmrnt of the problem. A plane channel of width 26 is considered. 
Its walls are dielectric throughout, except two of its sections of equal length 2h, located 

on its oppositesides and facing each other, which are of a perfectly conducting material 
(Fig. 1). The conducting sections are interconnected across a load fi. 

A working substance whose resistivity is represented by the varying from point to point 
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symmetric tensor PO (5, y) moves in the channel at velocity v (V(y), 0, 0). The 

Cartesian components ptx, pry, pvv of tensor PO are defined by formulas 

P .rx = ‘4 [P1 + Pz + (PI - Pe) cos 2Yl 

Pv!J = UP1 + P2 - (PI - p2) cm 2y] 

PxlJ = PyIT = l/2 (P1 - pa) sin 2y 

The superposition of the magnetic field B (0, 0, - B (d), B (~1 = B (-4 
generates in the channel electric current j (the Cartesian components of this vector are 
denoted by jr and i,) and in the external circuit current 1 defined by 

41: 6 c 

?. 

I = 
s ig (z, f 6) t-h (1.1) 

-A 

* @a I The equations defining the current 

-I! !-;I “I I I distribution in the channel are of the 
I I 

c’i’ 1 -i 
4 

form Cl] 

&l c div j = 0, (1.2) 

Fig. 1 PO-j= - gradz’++B 

Here z1 denotes the electric field potential. 

If the current function is expressed by the relationship j = _ rot, isz’, then Eqs. 

(1.2), (1.1) become 

2: = Px& - Pr& 2: = Ptr& - p,,,z”x + c-‘VB (1.3) 

I = Z2 (A, f 6) - z2 (- h, f 6) 

They are supplemented by the boundary conditions (Fig. 1) 

21 = z\ = const along BB’, z2 = 22 = const along BY?, C’C’ 

3 = z”, = const along BC, CC, z: - zl = R (z: - z”_) (1.4) 

If the channel is infinitely long, we must add the condition at infinity 

z:(*o@ y) =zay(f.m, y) =o (1.5) 

It is assumed in the following that the channel length is bounded by vertical insulating 
walls ( x 1 = L permeable to the lengthwise flow of the working substmce (Fig. 1). 

Let us formulate the problem of maximum stated in the introduction for Eqs. (1.3)- 

(1.5). 
As shown in Cl]. this problem reduces to the following: determine function 61~ (5, Y) 

so as to satisfy the equation 

2h’ ( ol) Ao, + IL” ( WJ (grad oJa = (cp,&’ VB, (4 (1.6) 

and the boundary conditions 

OlU = 0 along BB’, 0, = ml+ along BC, CC, 01 = WI- along B’C’, C’c’ (1.7) 

and the additional condition 
6 

Pmin s olx (0, y) dy = 1 - R @I+ - 0~) (1.8) 
-8 
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which defines the unknown difference ol+ - ol_ (here and in the following air and 
@I~ denote derivatives with respect to 5, y, res+ztively). The implicit form of func- 

tion h (03 is given by formula 

1 
h’ (“1) = I- R (ol+ - ol_) {Y (01) - R Ih (al+) - h (dll (1.9) 

Y (01) = c-l VBdy _ r 
Lb3 

The inequality h’ (or) H \ 0 which is the Weierstrass necessary condition must, also, 
be satisfied. 

The integral in the expression for ‘Y ( ot) is taken along the line of level L ( q} of 

function olwhich is at the same time the line of current j owing to the equality 

22 = h (or) (1.10) 

The current collected at the electrodes is 

I = h (w,,) - h (q-) (1.11) 

Problem (1.6)-(1.9) may be conveniently stated in another form. Integrating (1.9) 
with respect to ol, we obtain ml+ 

h’(“l) = i- R(ol --I_) [y Ml) - R i Y’ (01) &] (1.12) 
1+ 

T- 

Using the Weierstrass condition h’ (61 ) 1 > 0, we introduce function f ( wl) defined by 
equation 

f’ (6%) = 0’ (01) (1.13) 

We consider function f ( oI) as the new dependent variable ; the relation between f and 

o1 is given by formula (1.13), where in its right-hand side we have to substitute expres- 
sion (I. 12) for h’ (WI). Constant values f+, f_ correspond, respectively, to constant 
vaues or+ and ol_ of function o1 at the .insulators. 

Function B (z) is even, while function h (q) can be assumed odd with respect to s; 
this also holds for oz. Hence, instead of region CCC'C' (Fig. l), we can consider its 

right-hand half CBAABC and its boundary AA as an insulator along which o1 = 0, 
Function f (x, y) is considered to be odd with respect to x , and it is assumed that 

f = 0 along AA, f = f, along BCCB (1.14) 

Taking into consideration the equality 

Af = f/h“(q) Ao, + 2 7%) (grad Y)’ 

we represent (1.6) in the form 

ivf 3 Af - 2cp,i,lf, (o1) VBx (4 = o (1.15) 

Function f’ (q) in the right-hand side of this equation is to be expressed in terms of 

formulas (1.13) and (1.12), taking into account that o1 is odd with respect to z. The 
boundary condition at the electrodes is of the form f u = 0, and the conditions along 
the insulators are defined by me equalities (1.14) in which the constant is determined 

by condition (1.8) which now becomes 

pmin j fx (0, Y) dy = f’ (0) (I- 2Ra1+) (1.16) 
-8 
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Formula (1.13) and the note following it must be taken Into account here. 
In the analysis of this problem it can be assumed without loss of generality that&O. 

In fact, introducing function ml+ 

B, (x) = B (x) - 2cR 

s 

{ Y (01) dw, 

and assuming 
U@I) 

Vdy “0 

f = 1/l - 2Ro,+f, 

we obtain for the determination of I1 (x, y) a boundary value problem which is the 

same as (1.14)-(1.16). if in the latter we substitute B1 (CC) for B (XL’) and assume 

R = 0. 

2. Srcond variation of Jacobl’r ncce#,rry condltlon, Equation (1.6) 
(or (1.15)) is the Euler equation of the considered problem of optimum. As shown in fl] 
the optimum tensor P, is determined by the principal values pa = Pmin and p1 = 00. 
Angle Y (5, I/) is defined by formula 

tg Y = fUJfX 
under optimum working conditions the processes taking place in the channel are deiined 

by equations [1] 
0 = z~cos~- zrsinr (2.1) 

Z: cos r - ,z: sin r = - Pmin (z”, sin r + Z: cos r) + C-‘VB cos 7 

derived from the input equations (1.2) for ps = Pmin and pr = 00. Equations (2.1) 
may be conveniently written in the equivalent form @, 33 

z i= x 5’ , % l=u<‘_ Pmin (u” + 1) 5” + c-l VB (U = tg Y) (2.2) 

2-J zz x 52, zy2 = UC” 

The symbols 5’ and t2 appearing here must not be confused with those in Cl], where they 

have a different meaning. 

It can be shown by conventional methods [l] that the increment 6~ of the control 

function relative to its optimum value alters the functional - I bv 

6(--I) = +iHdzdy (2.3) 
, 

Here 

(2.4) 

and function or is the solution of problem (1.6)-(1.9), while 6 c1 and 6 c2 denote 
variations of t’, -5” consequent to the control variation 6u . Integration of (2.3) is 
carried out over the whole basic region. 

Formulas (2.3) and (2.4) are exact: unfortunately it is not generally possible to deter- 
mine the sign of the increment b (- r) , since for any arbitrary variation 6u virtually 
nothing can be said about 6 5’ and 6 5s. Data on these variations can be obtained by 

restricting the variation 6u by various means which would lead to some necessary con- 
dition for a minimum. One of these means namely, the strong variation 8~ over special 
sets (“bands”) in thezg-plane was investigated in p]. It yields the Weierstrass’ necessary 
condition for a strong relative minimum. 

Another way of restricting b;u is to assume this variation to be weak, i.e. small in 
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absolute value, but generally different from zero throughout the basic region. Variations 
SC1 and Sea are of the same order of smallness as ‘6~ and satisfy the equations in 

variations 

82,’ = S[l, 6z,l = z&r - Pmin (U” + 1) 6 5” + (5’ - 2Pmin UC”) 6U 

6z,’ = 652, 622, = lL652 + p&4 (2.5) 
obtained by varying Eqs. (2.3). The exact expressions (2.3). (2.4), on the other hand, 
differ for the increment 6 (-I) with allowance for relationship (2.2) by a term of 
higher order from the half of the second variation 

‘/2ha (- 1) = $& eU[Pmin (c2)” 6U - 52s’,1 + C1sY;21 as ‘Y (2.6) 

of this functional. For the functional - 1 to be minimum its second variation must 

not be negative, and this is the Jacobi necessary condition. We thus come to the associ- 

ated problem of the second variation minimum: the find the minimum of functional 

(2.6) for relationships(2.5) and boundary conditions (Fig, 1) 

6z1= f&r: along AB, 6z2 = 0 along AA, 63 = 62: alo%BCCB 

6z:= R6z: (2.7) 

derived by the variation of conditions (1.4). 

The Euler equation for this problem is constructed in the conventional manner @, 31 

with the use of Lagrange multipliers St,, 6q1, SE, and &la, corresponding to Eqs. 
(2.5). We obtain 

q& + R, + u6111 = 0 

If we set 
622 = hi (01) + h’ (or) &I, 

where function h’ (oJ is defined by formula (1.9) and h, (q) = 6h (q) a variation 

of function h (01) is a small function of its argument (the derivative of h,’ (q) is 
equal to the variation of the right-hand side of (1.9)). it can be readily shown that Eqs. 
(2.5) and (2.8) reduce the relationship 

2 (h,’ + h%o,)Ao, + 2h’Atiq + 2h” (Vo,.V6o,) + (h,” + h”‘6oJx 

x(VoJ2 = 0 (2.9) 

As should have been expected, this is a variation of (1.6) (Jacobi’s equation). 
Boundary conditions for (2.9) are immediately Dbtained from conditions (1.7) and 

(1. 8, 6u1, = 0 along AB ho, = 0 along AA, 

Pmids J 

60, =~ihl+ along BCCB 

q,, ds = - 2R6w,+ (2.10) 

u4 

It will be readily seen that the problem defined by (2.9) and (2.10) is equivalent to 
the boundary value problem obtained by the variation of Eq. (1.5) and related boundary 
conditions for f. 
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of 8hott=oirouiting, In this case (R = 0) in accordance 

h’ (01) = c-1 s VBdy = Y (f) (3.1) 
L(f) 

where new parameters are introduced for the lines of current level. 

Jacobi’s equation can now be written as 

A6f = zp’d 6 0 y (f) 1-9 (34 

The boundary conditions are of the form 

Sf, = 0 along AB, 6f = 0 along AA, sf = sf+ along BCCB 

Prnin6LSt)fn~~ = ~{Iy(f)l”‘> (3.3) 

It can be assumed in the analysis of this problem that (see El]) throughout the channel 
f, > 0, where n is the normal to line L (f) in the direction shown in Fig.& 

E :R 

Fig. 2 Fig. 3 

After variation (see Appendix) (3.2) takes the form 

Here 6fp denotes variation fjf at point P, and integration is carried out along the line 

of current L (f) passing through point P (M denotes the point of integration). 
The last of conditions (3.3) is of the form (see Appendix) 

1 
6f,ds = 0 (3.5) 

Ih 
This equality can be integrated along any of the lines of current L (0 (to prove this 

it is sufficient to integrate Eq. (3.4) over the region bounded by two lines of current 
L (f) connecting the electrodes and by two electrode segments, passing in the integral 
in the second term of this equation to variables f and s, where f is a parameter of the 
current line set ,L (j) and s is the arc length of such line). 

Let us analyze problem (3.3)-(3.5) in the particular case in which the horizontal 
sections BC of insulators (Fig. 1) are absent and the working region is a rectangle bound- 
ed by electrodes AC and insulators AA and CC (Fig. 3). If for any z E [0, h] and 
V = cons&we have B (J) > 0 , then function 



Optimum distribution of the working medium resistivity fensor 471 

satisfies Eq. (1.15) and, also, the conditions f y = 0 at the electrodes and (1.14) at the 

insulators ; condition (1.16) is obviously also satisfied (recall that R = 0). The constant 

f+ is now 

f+= $--(&$fmdx 

and the lines f = const are vertical lines connecting the electrodes. The Weierstrass 

condition If,,’ (x)] 2 > 0 is obviously satisfied. 
Jacobi’s equation (3.4) becomes 

A6fp + ( 4B2 (x) 
‘Bx(z)12 (Sfp - & 5 6fMdyM) = 0 

-8 
(3.7) 

and the boundary condition (3.5) is written as 
6 

s @f),dy = 0 
-8 

(3.8) 

The solution for 6fp is sought in the form of series expansion 

6fp = 5 a, (x) cos y y 
n-o 

W) 

This expression satisfies condition (3.3) at the electrodes. The substitution of (3.9) into 

(3.7) yields for the coefficients the following equations: 

tBr(412 a = o 

4B2(5) * 
@a0 o -= 
dzt 

(n = 1. 2,...) (3.10) 

(3.11) 

Related boundary conditions 

a,(O)=0 (n=O,I,...), % (h) = 6f+9 a, (A) = 0 (n = i, 2, . . .) (3.12) 

follow from (3.3) and (3.8). Condition (3.8) yields the equality 

da0 (0) _ 0 
dx 

(3.13) 

Only a &vial solution of Eq. (3.11) satisfies the stated conditions, while some of the 

solutions of Eqs. (3.10) may generally be nontrivial. The existence of such solutions 
depends on function B (z) and on the index n. 

Operators p,and q acting according to formulas 

P*(P = [-& + ($] cp (n = 1, 2, . ..). [&r WI2 
q’p = ,@2 @) (? 

are each separately positive-definite along functions cp satisfying conditions (3.12). tit 
us assume that the positive function B (x) is such that any set of functions with a limited 
energy norm of operator p n is compact in the meaning of the energy norm of operator 

q, i. e. 
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A [B Ml2 uIp/lp=~ &) q2dx 
0 

Then Eq. p,.,~ - pqq = 0 has an infinite set of eigenvalues [4] 

O<#< $‘s . . . 

And, obviously, 
pi(k) < p.(M) 1 

hence J$) is the minimum eigenvalue. 
If PI > 1, the problem defined by (3.10). (3.12) has only trivial solutions for all 

n , and the related functional (2.6) vanishes. For p1 (‘I = 1 the first of Eqs. (3.10) has 
a nontrivial solution which satisfies conditions (3.12) and, if cl:’ < 1 we can find a 

function Sf such that the related functional (2.8) is negative. In fact, when condition 

j.$’ < 1 is satisfied, there exists a nonzero function a,, (IC) which satisfies Eq.(3.10) 

(for n = 1) in the interval (0, ZJ, where I, < A, and conditions a,, (0) =ul* and 

(ZJ =O at the extremities of that .interval. Let us assume 

(0 < z < 11) 

(I1 \<z < h) 

Function 
Sf = a, (z) cos y (3.14) 

satisfies Eq. (3.7) in the interval (0, II) with respect to z ,and the related functional. 

(2.6) vanishes. The latter statement follows from the equality 

i/s 62 (- I) = - f 6c01s 672 as - f 60,,6z2 as 

in which integration is carried out along the boundary of the AC’C’A rectangle (Fig.3) 

with formulas (1.10). (1.13). (1.16) and (2.5)-(2.7). 
If #’ < 1, the zero of functional (2.6) is not a minimum. In fact, function (3.14) 

has a discontinuous first derivative with respect to s; if this is a minimum function, 
then the conditions of Weiersaass-Erdmann, which in this problem are of the form 

[ l5mJ = 0, [th,,]? = 0 

1 
‘WPnld5 > 5” 

2 2 b.4 - 5”SP + 51sg21 + 6w,,62; + 6w,62~ y = 0 

must be satisfied along the discontinuity line 5 = 1,. The expressions in parentheses 

vanish to the right of the discontinuity line, while to the left of it they are calculated 
by formulas 

51 = 0, 5” = (CPmi*)-l VB (X)7 ql = (2pmin 6)-l, ?J = 0 

%n,rl * 
6u = - ,,-/2&,‘B (x) 6 “* ( ’ 6 

5 -5 sin y 

6*2y = - v,,-;; (=) 6 
d+(x) 
- 

dx 
- ;&$ aI* (x)] cos y 

which are readily derived from the foregoing. 

The Weierstrass-Erdmann condition now implies (R(l,) # 0) 
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d+(x) I dx = 0 
x-11 

which cannot be satisfied unless function al* (3 becomes identically zero in the lnter- 
val (0, II). Hence there must exist a function & which imparts a negative value to 

functional (2.6). This proves that for the functional (2.6) to be nonnegative it is neces- 

B 

~ 

sary that the first eigenvalue of the boundary value 

problem (3.3)-(3-S) or, what amountS to the same, 
of the problem (3.10)-(3.12) be not smaller than 

unity. 
Note that throughout the region the related isu 

is not zero, hence 6~ is not a local variation (as 

L 4 5 distinct from “variation in a band”). Furthermore, 

Fig. 4 
this variation is essentially a two-dimensional one, 

since Eqs. (3.10) have a nontrivial solution ; Eqs. 
(3.11) has only a trivial solution. In other words, the univariate solution (3.6) satisfies 
Jacobi’s condition with respect to one-dimensional variations but may not satisfy it with 

respect to two-dimensional variations. 
For given ?” and 8 the value of pi” depends on B (3, The case in which B (x) is 

specified by a curve of the kind shown in Ffg.4 for I < A, 
lar for L1 = 

L, > h, and in particu- 
00 is of interest in practical applications. The Weierstrass condition 

B (x) > 0 is then satisfied, while the fulfilment of Jacobi’s condition depends on para- 
meters I, iL, 6 I as well as on the pattern of decrease of f~ction~(~)at~~~.The latter 

is satisfied,when 2 = 0 and B (x) decreases linearly ; if, however, this function decreases 
for 5 > 0 according to the law &,c-~~, where y > 0 is a sufficiently great con- 

stant (y > y. = &c?L-~ (1 -j- h26-2)‘/Z),then Jacobi’s condition is violated. 
In the first of these cases the rate of decrease of function B (x) along section 5 > I 

is limited by the Weierstrass condition, that is by the requirement that B > 0 for 
5 CG IO, h]. In the second case the Weierstrass condition is always satisfied ( (~YX > 0 

for any z) and the highest possible y (= Yo) is determined by the Jacobi condition. 

We have to find optimum solutions for conditions in which function B (2) decreases 

more rapidly than admitted by the conditions of Weierstrass and Jacobi. 
If function B (IC) does not increase anywhere and does not change its sign from plus 

to minus at point sidefined by E < zi < A, then (3.6) is the optimum solution only 

on condition that zi = h. In other words, an insulating wall must be fitted where the 

nonincreasing function B (2) vanishes. 
If, with the Weierstrass condition satisfied, Eq. (3.10) with condition (3.12) has 

(1 - E ) (e > 0) as its eigenvalue, then Jacobi’s condition is not satisfied. In the 
case of exponential decrease of B (x) described above this occurs when Y > Yo. 

For y < y. Euler’s equation (1.15) has (3.6) as its unique solution satisfying condi- 

tions (1.14). (1.16). For Y = YO a “branching” of this solution takes place, while for 

y >^Yo there are generally several solutions of Eq. (1.15). There arises consequently 
the problem of extending solution (3.6), which is optimum for Y < TO, with respect to 
parameter y. over y = y. in such a way that the proposed solution remains optimal, 

i.e. that it satisfies in any case the necessary conditions of Weierstrass and Jacobi. 
Let us find the “small” solutions of this problem, i. e. a local extension of solution 

(3.6) with respect to parameter y on the assumption that the remainder y - YO is 
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fairly small in comparison with y,,, and that function B (x) is equal to Boe--~~, for 
s>o. 

Let us set 
f = fo + rp? Y=YO+k (3.15) 

and consider the problem (1.14)-(1.16) on the same assumption that f,, (z) is defined 

by formula (3.6), V = const, cp (2, y) is the unknown function, and h- / v. is a 
small positive parameter. In terms of the new variables the problem can be expressed 

thus : 
aI (ql, Ii) = M (fo + 9, Yo + 4 = 0 

9, = Otalong AA, cp = rp+ along CC, ‘py = 0 alongAC 

s 

Operator (is the Gateaux derivative of operator - @) 

c = -oQ (0, 0) = - nJV (fo, yo) 

is the Fredholm operator. We write (3.16) in the form 

CT = R(cp, & R(cp, k) = @ (cp, k) - @, (0, 0) cp 

(3.16) 

(3.17) 

(3.1Sj 

The homogeneous boundary value problem (3.17) for equation (D, (0, 0) cp - 0 has 
the nontrivial solution 

z=a(s)ccls~ 

where a (x) satisfies Eq. (3.10) and the related conditions (3.12) for n = 1 . We con- 

sider solutions z as normed h s 

ss 22 (5, y) ds (ly = 1 
0 --s 

For the solvability of the nonhomogeneous boundary value problem @‘e (0,O) ‘p= 
= g (5, y) with conditions (3.17) it is necessary and sufficient that 

A 6 

ss gzdxdy = 0 
0 --s 

since the related homogeneous problem coincides with its conjugate. 
The small solutions of Eq. (3.18) are derived by the Liapunov-Schmidt method 

described in [5> Let us write (3.18) as 

C,q = Folk + 2 Fij$k’ $_ E’, E = i r” cpdxdy (3.19) 

i+j>2 0” “s 

F.. = 1, ai+jR@.OJ 
11 -ayT Qi(j& 

Here Fij is a power operator of order i + j (see [S]) and E is a coefficient which 
remains to be determined. We take into consideration that function z = U (X) COS 
(ny / 6) is a simple zero of operator C (see (3.18)). The solution cp (5, y) of Eq, (3.19) 
is sought in the form of series expansion 

cp = 5 qlo Ei + $J Ei i Cpijkj 

i=l i=o j=l 

convergent for sufficiently small 1 ‘; 1 and Ii [S]. Substitution of this expansion into 
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(3.19) yields the relationship 

(3.20) 
i=2 i=O j=1 0 -6 

Functions cpi~ are determined from the recurrent system 

Clcpo, = Felt ClcpO2 = Fo, + 2F11901 + &O~OI~ (3.21) 

G%, = Fos + 3F12(~01 + 3Fzno1' + Fso'pol3 + 2F,,~o, + ~J’~,cPo~cP~~ 

c l(Pl0 = 27 Cl%0 = =‘,o~,o(~,o + F,oT,,~ 

C,cp,o = F~o(P~o’, C,cp,r = ~F,,vJ,, + 2Fsocp,orpo, 

C,cp,z = 2F,,rp,o + 2Fzo’~o1c~oa + 3F,,(~,o~ + ~J'~o~PoI'P~o~ 

with boundary conditions (3.17). Substituting the obtained values of these functions into 
(3.20). we derive formulas defining the constants iii 

(U,Z)=j~zLZ~Z~Y, r = q-1 
0 -ii 

We have 

Lo, = (Fo,, 4, Lo2 = V’o2 + 2F,, VFo,) + F20U’Fod2, 4 (3.22) 

L o3 = (Fo3 + 3F12 O’Fol) + 3F2, (rFol>” + F,, (rFOd3, 4 + ([2F,, + 

+ 2F20 U’J’o31 r [Fez + 2F,1 WJ’o,) + F20 0’FoJ21, 4 

~520 = V20z2, 4, L,, = (U’,,~ WF2,z2) + Fx$, 4, 

L,, = W,,z + =‘,oz WO,), 4 

It is shown in the Appendix that formulas 

b b 

TO f-z- s (U - unr) (u - UM) dYM - $ +- 
-b 

_s, (U - Uhf) ‘&f \ (u - hf) b} 
-8 

(3.23) 
4VBo 

TO2 Pkio c 
e-6 F,ou3 = 5 (u - UM) (uM)~~ dye - + i (u - u,d2 hdxx GYM+ 

-5 --b 

+ + i (U - uai)’ (&I& &/AI - ++ 5 (u - u&f) $/M i (u -%&M)r&M--- 

--s -5 -8 

6 
3 To2 

--- 16 6 1 (u - unr) dYM 5 (u - ui%J2 dYM + & Tg 
--6 --s 
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are valid. 
These relationships together with (3.22) show that Loi 

also be checked that 

= 0 (i = 1, 2, . ..). it can 

L,,, = 0. Hence the* branch- 
6.T) lo-’ 

{,’ 
ing equation (3.20) results in the following control- 
ling equation [5] : 

f. J&g* + L,,k = 0 

D Both roots 
f 

Er,s = f (---h-.&i / Lso)‘/z of this equa- 
tion are real, since it can be shown (we omit the proof 

Fig. 5 owing to the limited space; that 

$Qc~iTt+2 i’B0 h_ 
(1 + t)[s(t)+ T(t)] cpkin 

+ 3 1/(1 + t) (1 - 3t) + (5t + 1) 
e- viz -COSJc 1/Q x 

sin X 1/i - 3t I 

x er VIZ sin rt r/l - 3t (3.24) 

It will be seen from the curve of function S (t) + T ( t) that S ( t) + T (t) > 0 for 
all t > 0. 

The small Solutions of Eq. (1.15) are of the form 

2 =- 
“Ibin 

x sin y cos 7 + 0 (k) = f. _t ok’/2 + 0 (k) (3.25) 

The direct verification of Jacobi’s condition is difficult ; it is much easier to calculate 
the total current increment consequent on the transition to the small solution (3.25). 
The current corresponding to the invariate solution (3.6) is 

(3.261 

The j,-component of vector j is defined (see (1.10) and (1.13)) by formula 
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i, = [ y (f) P fry Y (f) = c-IF/ \ 3 dy 

Lifl 
The following relationships 

[ Y (f)]“’ = [Y (fo)]“’ + & [Y (f*)]-‘/* (i Pmin (ET i 3, (2) e’/lYG (W - 
-s 

- OM) +M + Pmin k ($$-yg [ 3, (5) e’izys (x - xM) dyM - 
-‘s 

B,, (5) eYoX (0 - 0~)~ dye I - 
--6 

- - I/B k [Y (fo)]-*i2 [ 5 B, (x) e’/z*ffl (a - wM) dyMr + u (k) = 
P&in Fr2 2c6 

89 0 

-S 

= [Y (fo)I”?!I Plc"Z + qk + 0 (4 
3 = 3, e-Yor (3.27) 

are valid (see Appendix). The increment k of exponent y has been omitted in the last 
formula; this can be done by calculating the total current increment due to the fwo- 

dimensional character of solution (3.25). 
We write the expression for Sf in the form 

Here the first term in the right-hand side is defined by formula (3.25); the coefficient 
b , although unknown, has to be retained for the sake of calculation accuracy ; it will 
be shown subsequently that it is not necessary to determine it explicitly. 

With the use of formula f, = (f,Jx j= w,Fc’ls + Xxk we find the increment of the 
jy -component of vector j 

w, = {Y (f) IV, - I y (fo)l (f”), = t- u‘r (fo)]“% + P (fOO)J k’12 -I- 

+ {\Y (fo)l”‘xx -I- Px + 4 (foo)xP + 0 (4 

foe = 2- - 
( J 
lrBo “’ (1 _ e-‘/2 Y0.T) 

TOP*in 2cs 
(3.28) 

We have 6 

P 
= _ robin ‘- 

2c 
[ yI’ (fo)]-‘/2 (g)“‘g (2) e’/*yDX S (0 - WM) dy, = - ToQrnin O6 

--6 

From this follows the expression for the coefficient at & Ic’lz in (3.28) 

(3.29) 



478 K. A. L&e 

Integration of this expression (for y = 6) with respect to J: from zero to h yields zero; 
hence the total current increment is determined by the term in (3.28) linear with respect 

to li . 
We separate in the expression for_g(fo,Jx_ (see (3.27) and (3.28)) the term 

fi 

which, when combined with ,[Y (fo)]‘/z xx (see (3.28)),yields an expression which 

differs from (3.29) by a constant factor, hence the related contribution to the total cur- 
rent is zero. It remains to calculate the integral 

2k j (4 - Q1) I It=-6 (fodx & 
u 

We have 

The increment of total current is thus 

(jIz4h2k VBo 1/%nv1+t+2 
Gin S (t) + T (t) 

Function A(i)= (81/1kh)102 is shown in Fig. 6 in the form of a curve. It will be 

seen from this curve that for kh = 2 < 2X < y& the transition to the small solu- 

tion is related to an up to 5% increase of current flow from the electrodes. 

It appears that the current increase is in the main independent of the choice of the 
small solution (of the choice of sign in formula (3.25)). The difference between these 

solutions can manifest itself in terms of higher order with respect to k in the current 

density expression. 

The physical reason of current increase shown by the two-dimensional solution is that 
in a fairly rapidly decreasing field B (z) it can be advantageous to utilize to a lesser 

extent the region of small values of B (z), simultaneously reducing in the channel the 

&lP 
effective resistance to current generated in its middle 
part, where the field is sufficiently strong, Such con- 

2.0 ditions of current flow are established by solution 

(3.25) whose lines of levels (lines of current) corre- 
/B sponding to the upper and lower signs in (3.25) are 

08 
shown in Figs. 7a and b. respectively. 

An approximation to the resistivity tensor distribu- 

tion defined by the equalities pr = oo and pa= Pmin 
a I 2 t can be obtained by introducing in the stream of an 

Fig. 6 
isotropically conducting medium of resistivity 
P = Palin a set of fairly closely spaced thin insulat- 

ing baffles permeable to the fluid. The optimum shape and the arrangement of such 
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baffles in the stream of working fluid are dictated by the configuration of the lines of 
current in the optimum mode of tensor resistivity. If the channel geometric parameters 
and the functions V (y) and B \x) are specified, the optimum mode can be derived by 

methods described in [l] and in this paper. 
Other known solutions @, 71 indicate the feasibility of 

increasing the current by fitting the channel with horizon- 

tal nonconducting baffles parallel to the channel axis (con- 

ventional analytical methods can be used for solving the 

problem of current distribution only for this arrangement 
of baffles). The horizontal arrangement of baffles is not the 
best. The question how close is it possible to come to the 

optimum current output is resolved with the use of methods 
described here. 

let us assume that function B (z) is specified by a curve 
of the kind shown in Fig. 4 and consider the mode of homo- 

Fig. 7 geneous isotropic resistivity p = pmin = const as the 
non$timal input mode 1. The channel is assumed to be 

bounded at its ends by the nonconducting walls cc and C’C’ (Fig, 1). We denote by 

I, and I, , respectively, the current flowing under conditions of mode 1 and that under 

those of the optimum tensor mode 2, in otherwise equal conditions. The rest 1s - 1, 

is, generally speaking, due to the violation in mode 1 of the Weierstrass and Jacobi neces- 
sary conditions. The optimizing effect of baffles is determined by the extent to which 
these restore the violated necessary conditions. 

The Weierstrass condition is of local character, and can be restored with a certain 
degree of precision by changing locally the resistivity by fitting horizontal baffles in 

the zone of field decrease. These baffles inhibit the formation of current eddies in such 
zones. The optimum current distribution (mode 2) is entirely free of eddies [l& Vector 

lines j in the case of a channel with baffles are the closer to lines j in mode 2 the 
greater the ratio of the length of the decreasing field zone to the channel width. When 
this ratio is high, a satisfactory adherence to the Weierstrass condition can be expected 
in the case of a channel with baffles, while for a channel with short zones of a field 

decrease this condition is satisfied to a lesser extent. 
If the introduction of baffles results in a current distribution which reasonably accu- 

rately satisfies not only the Weierstrass but, also, the Jacobi condition, it can be consid- 

ered that a satisfactory approximation of current output to Is has been achieved. 

However in a number of cases the Weierstrass condition is already satisfied in the 
input mode 1, while that of Jacobi is not. In such cases local resistivity changes (includ- 

ing the introduction of horizontal baffles) will not satisfy the latter condition even appro- 
ximately. 

This can be illustrated by the following example. If the channel is bounded by hori- 

zontal electrodes and vertical insulators, then for B (x) > 0 solution (3.6) satisfies 
the Weierstrass condition throughout that channel independently of its length. If at the 
sametime B = B,cY~ , . then for yk > 2n (1 + h%-s)‘h solution (3.6) does not 
satisfy the Jacobi condition. while solution (3.25). the transition to which shows an in- 

creased current output, satisfies the latter. 
On the other hand, the introduction into the channel filled with a uniformly conducting 
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medium (Fig. 3) of one or more nonconducting baffles (horizontal or otherwise), or the 
lowering of the electrical conductance in any part of the channel, will only decrease the 
current output at the electrodes, 

The increased current output shown by Solutions (3.25) is due to the effect of the 
total tensor resistivity zone. The substitution of a sequence of baffles (whose shape is 
determined by Figs. 7a and b) for this zone increases the current owing to the interac- 
tion of charges emanating from the baffles. 

Appendix. Calculation of the first coefficients of expansion (3.19). Prior to vari- 

ation a line of current I, (f) passes through point P of the basic region; thereafter the 
line of current L, (F) passes though the same point (Fig. 8). These lines are assumed to 

be close to each other in space C,. 

4 V L ($, 

$r a 
4 IF) 

EH 

We define the position of an arbitrary point Q-in the neigh- 

borhood of line L (f) by coordinates s, c, with s being the 
length of arc of line L (f) between points N and Q which is 

L/f) the base of the normal to line L (f) passing through point Q , 

and 5 being the projection of vector qQ onto the normal n 
to the line L (f) at point q. The directions of unit vectors 

t and n , respectively, the tangent and the normal to line 

L (f) are defined by formulas 

Fig. 8 t = (Zs’ Y,). n = (Y,, -zs) 

The radius vector R of point Q is related to the radius vector r of point q by the expres- 

sion R=r+nc 

Using the Frenet formula dn t -=- 
ds P 

where p denotes the radius of curvature of line L (f) at point q, we obtain the relation- 

ship between the differentials 
dR=t i+$ 

( i 
ds i_ ndc 

From this we obtain the following expressions for the Lame coefficients: 

h,=lf5/p, h,: = 1 

If point Q moves along the line L, (F) (F = const). then along that line 

Simultaneously we obtain 
dc = - (FJF$ ds 

dR = [(i + f/p) t - (FJ Fr) n] ds = TdS 

Here T denotes the unit vector of the tangent to L, (F) and dS the differential of an 

arc of that cwe.The curve L (fJ of the basic (old) set (Fig. 8) passes through point Q : 
variations ‘pp = F-f, ‘PQ = F - fl 

are at points P and Q related by 

VP = TQ + f& + %f 7$i2 + ‘/6f~6$’ + ’ (t3) (A.11 

and the derivatives fc9 fr;c and f,.:rc_ in the right-hand side of the last equalities are cal- 
culated at point q (Fig. 8). Now, assuming that 5, (Ppf ‘PQ’ cP,* (‘P,)c and (qp)cr. are of the 
same order of magnitude, we write the series expansion 
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The substitution of this expansion into (A. 1) yields the equation in 5, (for brevity we 

shall write forthwith cp for (p,J 

q p - cp = (f, + cp;) : + l/z (f,r, + cp 66) c + ‘M&s + 0 K3) (A.3 

Let us find the root of this equation which would differ only slightly from (cpp-cp)/fL- 

For this we set 5 = (ran - cp)/fC + E, where e = o (cp). Substituting this into (A. 2) and 

neglecting terms of order higher than three, we obtain the equality 

Solving this equation for e, we obtain 

(A-3) 

Operator Q, (cp, k) (see (3.16)) is defined by the equality (V = const) 

VB, (4 
Q, (cp, k) E AF - 2~~mln [‘y VT”* = Af 

J’B, (4 
- 2cp,l, I~(frl’z + 

(4 VB, 
+ A%- dcp* { 

- [Y (j)]%Y + 4 [Y(f)]+ (6Y)2 - 

(A-4) 

where in the calculation of variation 

&Y=C \ Bdy-$ 
s BUY 

LliF) L(f) 

only terms of up to and including the third order with respect to f are to be retained. 
Along the & (F) line 

dY (La(F) = (1 + t/P) dy - t’dz 
Here dz. and dy are projections of tds onto the z - and y-axes, respectively, 6 is the 
coordinate of a point of curve L,JF), and c = dc / ds = -F, / Fc; the differentials 

dx and dy are related by the equation of curve L (j): fxdx f j&y = 0. 

In the following we assume that f = f (x), which implies that the set consists of ver- 

tical straight lines. In this case along the curve LI (F) dy ILItF) = dy, hence 

s 
Bdy- 1 Bdy= i (B=5+~B,,E”+~B,,,C+...)dy 

IA(F) L (F) -8 

For the operator @ (Q k) , after simple transformations, we obtain the expression 
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For the function f = f. (5) defined by formula (3.6) we ccmstruct the expression for 

(k 3) in the form 

Substituting this into (A. 4), we obtain formula 

From this follow the equalities (3.23) defining F+ 
The determination of Lij (see (3.20)) involves the use of formula (3.22). Since this 

requires very cumbersome calculations, it is omitted here. 

1. 

2. 

3. 

4. 

5. 

6. 

BIBLIOGRAPHY 
Lur’e, K. A., On the optimal distribution of the resist&Q tensor of the working 

substance in a magnetohydrod 
Lur’e, K. A., P 

namic channel, PMM, Vol. 34, Np2, 1970. 
Optimum contra of the conductance of a fluid moving in a chan- 

nel in a magnetic field. PMM Vol. 28, Nn2, 1964. 
Lur’e, K. A., The Meyer-Bolza problem for multiple integrals and the o timi- 

zation of performance of systems with distributed parameters. PMM Vo l! 27,1963 
Mikhlin, S. G., 

Moscow, 1957. 
Variational Methods in Mathematical Physics. Gostekhizdat , 

Vainberg, M. M. and Trenogin, V. A., The Theory of Solution Branching 
of Nonlinear Equations. “Nat&a’:, Moscow, 1969. 

Sutton, G. W., Desi considerations of a magnetoh drod 
B l? 

amic electrical 
power generator. $5” rota Astronautica, Vol. 3, pp. 530 4, ( . Y. Sot. Automat. 
En s. ), 1960. 

Vata A. B and Nemkova, N. G,, Certain two-dimensional roblems 
0 

,fin 
e&r&c &rent distribution in a magnetohydrodynamic channel wi tR non- 

conducting baffles. PMTF, Ng2, 1964. 
Translated by J. J. D. 

7. 


